
全國高職學生 103 年度機械群專題暨創意製作競賽「創意組」

群別:機械群

參賽作品名稱:腳踩式發電機

關鍵詞:腳踩、發電機

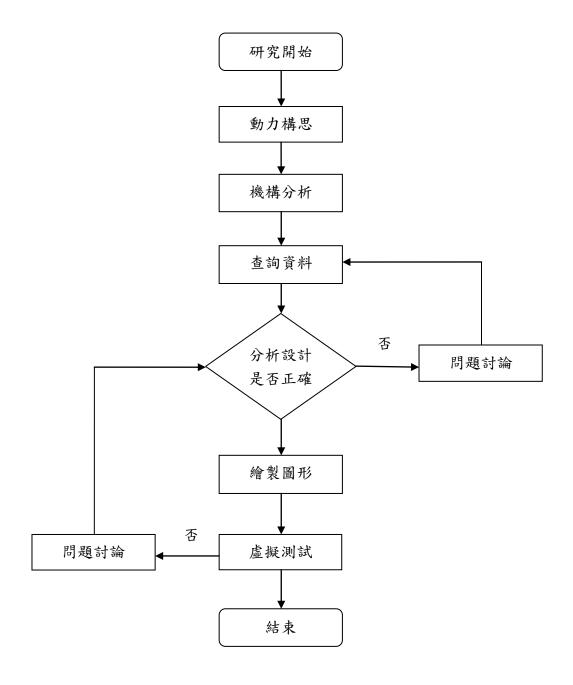
壹、創意動機

有一次在家裡以腳踩式打氣桶幫腳踏車打氣,突然想到,如果這打氣桶也可發電,那麼我踩踏打氣時,又可以產出綠能發電,如果這樣的發電機做成公共設施,舖設在公眾場地如公園的健康步道上,每天去那邊運動的人只要踏著它就可以發電了,既環保又節能。如果這個創意被廣泛的運用,想想一年可以為台灣省下多少的能源呢?

回想一年級上機械電學,老師教過磁生電原理,二年級的機械原理課程,我們學習到彈簧機構、連桿機構、制動器、......等。現在我們的專題製作,運用 先前學的東西,發揮創意設計出屬於我們的專題製作。

貳、創意目的

- 一、了解磁生電場的運用。
- 二、了解各機械機構的實際運用與方法。
- 三、應用課程所學原理,進而做出實務運用的發電機,以達到我們的 研究目的。


四、發揮綠能環保愛地球的精神。

參、作品特色與創意特質

本作品特色在於其輕巧方便,所需材料成本低廉,製作簡單,發電過程無汙 染產生,不會對環境造成衝擊,且不需耗費能源,符合現代化環保與綠能需求。

應用於低耗電之夜間照明設備,取代原有電力供給來源,且動力輸入過程係經由腳部踩踏,踩踏板會隨步伐起伏,饒富趣味與體感,不僅實用且深具無限創意。

肆、研究方法

伍、依據理論及原理

一、依據理論

(一)人力發電機:可以節省許多的能源。

優點:相較於其他發電方法,只需要人力就可以發電,可節省大量的能源。

缺點:電力不穩定,也無法發出大量的電力。

(二)磁力發電機:常用於科學教學,可自行 DIY。

例如:自行製作搖搖閃閃 LED 燈。

優點:可自行製作,材料便宜,可在一般電器行買到。

(三)隨身發電機:普遍用於不需要大量電力的地方。

例如:手搖發電手電筒(為隨身發電機與往復式發電機結合)。

優點:攜帶方便,使用便利。

(四) 自行製作搖搖閃閃 LED 焓:

http://epaper.nature.cyc.edu.tw/Myweb/LED-Lighter.htm

(五)手搖發電手電筒:

http://blog.roodo.com/energytech/archives/9727607.html

(六) 手搖式自發電手電筒電路原理介紹:

http://www.autooo.net/utf8-classid157-id90138.html

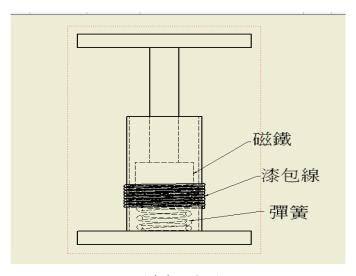
二、原理

在踩踏板底下固定好彈簧機構,並把軸裝在彈簧上,在軸中間的部分安裝磁鐵,並在磁鐵外圍的管子繞上線圈,利用踩踏板子加上彈簧的收縮,使軸上的磁鐵在線圈中往復運動,並且依靠彈簧彈力機構做用,踩踏板可回歸原來高度,如此反覆作用,依"法拉第磁生電原理"即可產生電力。

陸、作品功用與操作方式

一、本作品功用:

- (一)既能發電又能節能省碳。
- (二)可應用之範圍相當廣泛。
- (三)結構簡單而且裝置容易。
- (四)生產技術低且成本低廉。
- (五)具備新穎性以及進步性。
- (六)耐久性而且不容易損壞。


二、操作方式:

把發電機裝置於大面積之平地,如人行道、廣場或公園等,再將電線接於本 發電機與電器用品之間,經由人行反覆踩壓發電機上方的踩踏板,即能使磁鐵在 線圈內作動,進而產生電力,供給小型路燈或廣告看板等夜間照明設備之用。

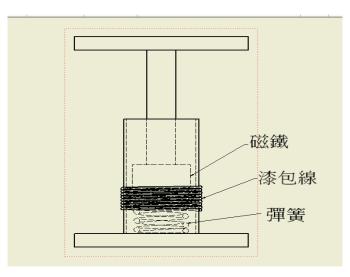

柒、製作歷程說明

把木板切割成兩塊 25X25CM 的正方形,再將直徑 80MM、厚度 5.5MM 的塑膠管切成長度 15CM,及直徑 100MM、厚度 7.0MM 的塑膠管切成 18CM 的長度,然後把線徑 5.0MM、內外徑 70MM 的壓縮彈簧,切割成自由長度 100MM,再準備一塊直徑 80MM、厚度 20MM 的圓形強力磁鐵。

首先把一塊木板當作底座,在中心位子放置彈簧,並套上直徑 100MM 的塑膠管,用熱熔膠固定,在塑膠管上 6CM 處(由下往上)繞上漆包線(200 圈),完成底座,再將另一塊木板當作腳踏板,把直徑 80MM 的塑膠管一頭固定在腳踏板上,另一頭用熱熔膠把磁鐵固定好,最後將磁鐵與彈簧用熱熔膠結合,即完成本作品。

圖(1)完成圖

圖(2)外型、剖面、上視圖


全國高職學生 103 年度機械群專題暨創意製作競賽「創意組」心得報告

一、作品群科:機械群

二、作品名稱:腳踩式發電機

三、作品理念與特色說明:輕巧方便、節能減碳

四、作品照片:

本作品構造圖

五、學生參賽心得:

作品的應用原理與實際構造上,已經完全結合我們目前所學的機械與電學知識,從開始構思到最後的製作,經過了無數次的修改,如何產生電力?如何作動?都是我們思索的課題,最後在團隊的合作與老師的指導下,終於完成整個專題。從創作發想到運用人力、機械結構與電磁感應原理,皆能真正將高職所學課程作完整的結合,腳踩發電機作品於是誕生。當然這個作品可以更進一步的修改,從提升產生的電力到使其電壓更穩定,都是我們未來努力的目標。